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Abstract—Diamagnetic loops can be used as a non-invasive 

method for measurements of beam size in electron beam 
accelerators that use solenoidal magnetic transport. A 
comprehensive theory for interpreting data from a diamagnetic 
loop relates the rms beam radius to the excluded flux measured 
by the loop and the beam current. Thus, primary calibration of 
the loop must relate the loop signal directly to the exclude d fl ux. 
We have simulated these calibrations with a 2D field solver in 
order to identify possible sources of uncertainty in our 
calibration technique.   
 

Index Terms—Linear induction accelerator, accelerator 
diagnostics, beam diagnostics  
 

I. INTRODUCTION 
HE diamagnetic loop diagnostic technique fundamentally 
measures the magnetic flux excluded by a diamagnetic 

object. The excluded flux measurement is then related to some 
physical property of the object through a model; perhaps with 
the help of additional measurements from other diagnostics. 
Whether the final result is the energy of a plasma column [1], 
the size of a charged-particle beam [2], the velocity of a metal 
projectile or jet, or the susceptibility of a diamagnetic salt, the 
uncertainty of the result directly depends on the accuracy of 
the excluded flux measurement. Therefore, primary calibration 
must also be directly in terms of the excluded flux, rather than 
a physical property of the diamagnetic object that is inferred 
through a model and auxiliary measurements. In this way, the 
fundamental calibration is free of any assumptions and 
approximations made in relating material properties to the 
excluded flux. 
 The diamagnetic loop (DML) technique consists of filling 
the experimental volume with a magnetic field, and measuring 
the change in flux through a loop when a diamagnetic object is 
introduced. In particular, DMLs have been used to measure 
the size of intense, relativistic electron beams (IREBs) [2, 3, 
4]. Although DML measurements have been made in a 
bewildering variety of geometries for magnetized-plasma 
experiments, the geometry for IREB measurements is usually 
axisymmetric, which greatly simplifies the problem, and lends 
itself to 2D simulations.  
 This article gives an overview of the technique and a 
prototype DML apparatus under development at Los Alamos 
for proof-of-principle testing with an IREB. In what follows, 
we briefly discuss the theory, DML apparatus, calibration 
method, and 2D simulations of the calibration.  

 
 

II. THEORY 
 
In its simplest form, the DML   technique is illustrated in 

Fig. 1. A very long conducting beam pipe with radius WR  
initially contains a uniform axial magnetic field 0B . 
Introduction of an electron beam pulse depresses the field 
inside the beam. The field outside of the beam is increased by 
an increment, B∆ , in order to conserve flux inside of the pipe. 
Flux is only conserved for a short time determined by the 
magnetic penetration time of the conducting pipe. However, 
for our purposes, we confine the discussion to considerations 
of a simple cylindrical geometry with a uniform magnetic 
field.  We also assume azimuthal symmetry to the diamagnetic 
object, and that it is much longer than any of the radial 
dimensions so that we may ignore axial variations in what 
follows. 
 

 

Fig. 1: Magnetic fields inside diamagnetic loop diagnostic. 0B  is the 
field prior to arrival of the beam. The field is depressed inside the 
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beam by its diamagnetism. Outside of the beam, the field is increased 
by B∆  in order to conserve flux. (Adapted from ref. [5]) 

Consider a single loop with radius LR  and area 2
L LA Rπ=  

centered within a cylindrical vessel with radius WR  and area
2

W WA Rπ=  . The vessel may, or may not, be a conductor that 
conserves rapid changes of flux. Also, suppose that the vessel 
is filled with a uniform axial magnetic field 0B   Now 
introduce a diamagnetic object as shown in Fig. 1. In our case, 
the object is a charged particle beam, but it could also be a 
plasma column, a bullet fired from a gun, or a diamagnetic 
salt. Inside the object, the field decreases due to 
diamagnetism. Outside the object the field increases to 
conserve flux. 

 

A. Excluded Flux 
The flux excluded from the object is defined as [1]  

 

 ( )0 0
( )2

a

x a zB B A B r rdrπΦ ≡ + ∆ − ∫   (1) 

where 2
i iA Rπ=  [1]. From flux conservation one has 

 

 ( )( )0 0 0
( )2

a

W W a zB A B B A A B r rdrπ= + ∆ − + ∫   (2) 

which simplifies to 
 
 x WBAΦ = ∆   (3) 
 

We measure the change in flux through a DL surrounding 
the object, which is 
 

 ( )( )0 00
( )2

a

L L a z LB B A A B r rdr B Aπ∆Φ = + ∆ − + −∫   (4) 

which simplifies to 
 
 L L xBA∆Φ = ∆ −Φ   (5) 
Using Eq. (3) one has 
 
 ( )1 /L L W xA A∆Φ = − − Φ   (6) 
 
It remains to relate the excluded flux to a model of the object.  
 

B. Rigid Rotor Excluded Flux 
The relation between parameters and excluded flux can be 
deduced from the rigid-rotor beam equilibrium [6, 7, 8]. In 
order to conserve angular momentum, a beam born without 
any at a shielded cathode must rotate when it subsequently 
enters an axial magnetic field.  Consider a uniform beam with 
current bI  and radius a   rigidly rotating in an axial magnetic 
field zB . Conservation of canonical angular momentum gives 
the angular frequency: 
 
 2 2 / 2e zP m a ea Bθ γ ω= −   (7) 

 
For the DARHT beam born in a shielded diode, 0Pθ =  , so 

 
2

z

e

eB
m

ω
γ

=   (8) 

which is just the betatron frequency. In practical units 
( / ) ( ) / 3.4zck c cm s B kGβω γ= =  . Therefore, the azimuthal 

current density in the beam is 
 j nev nerθ θ ω= ==   (9) 
where the density is a constant /zne J cβ= . Taking the beam 
to be infinitely long compared to the DL apparatus, one can 
calculate the diamagnetic magnetic field inside a shell of 
thickness dr  to be 
 
 0DdB j drθµ=   (10) 
giving 
 

 
2

0 00 2
rz z

D
J J rB rdr
c c

ω ω
µ µ

β β
= − = −∫   (11) 

Integrating this field over the beam area gives the flux 
excluded by the rotating beam, 
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0
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2
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Φ = − ∫   (12) 

Integrating, one gets 
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  (13) 

where equilibrium beam rotation at the betatron frequency has 

been used, and 
0

4 17.05 kAe
A

m c
I

e
π βγ βγ
µ

= =  is the Alfven 

limiting current.  
Thus, one has the beam radius in terms of the measured 

excluded flux and known zB , bI , and γ ; 
 

 2 2 xA

b z

Ia
I B

π
Φ

= −   (14) 

 
where xΦ  is related to the diamagnetic loop measurement by 
Eq. (6). This is the same as Eq. (48) in ref.  [5], which was 
derived more rigorously for an arbitrary axisymmetric current 
distribution. Since it has been derived for a cold IREB, it does 
not include the additional diamagnetic contribution due to 
beam temperature/emittance [9]. Although the correction for 
this is expected to be inconsequential for DARHT-like beams, 
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it will be examined in a future article. 
  

III. APPARATUS 
According to Eq. (13), the largest DML signals (lowest S/N 

ratio) will be obtained for large high-current, low-energy 
beams in a strong magnetic field. The only control the 
experimenter has over this is the bias magnetic field, so our 
apparatus is incorporates a dedicated solenoid to provide the 
bias field, rather than relying on the fringe field of existing 
transport solenoids. Among other advantages, this permits 
flexible selection of placement of the DML in drift regions.. In 
use as an installed beam monitor, the DML solenoid can be 
integrated into the overall magnetic transport tune once it has 
been adjusted to provide adequate DML signal amplitude. 

An advantage of incorporating a dedicated bias solenoid is 
that it permits enlarging the detection area, which is the area 
between the loop and the wall, as clear from Eq. (6). Thus, our 
apparatus has an outer wall diameter of about twice the DML 
diameter, which was not possible in previous attempts on 
DARHT-II.  
 

A. Dimensions 
Fig. 2 is an illustration of our prototype DML apparatus as 

it might be installed in the beam line of DARHT or Scorpius. 
Although a ten-turn loop is shown in this drawing, the 
prototype uses two opposing single turn loops for balanced 
signal detection. Longitudinal slots in the beam pipe permit 
penetration of the axial magnetic field into the flux conserving 
volume, while shielding the beam from transverse fields that 
could cause RF beam motion due to cavity modes. Relevant 
dimensions are listed in Table I. 

 
Fig. 2: Prototype DML apparatus. The bias solenoid is shown in 
purple. The beam pipe is shown in blue, and the flux conserving outer 
wall in grey Balanced-loop signal output cables are shown in 
green.(Adapted from ref. [10]) . 

 
 
 
 

 
 
 
 
 
 
 
 
 

Table I. Prototype DML Apparatus Dimensions [10]. 
 

Element Symbol Units Value 
Beam Pipe    
    Inner Radius inR  cm 7.3 
    Outer Radius 

outR  cm 7.94 
Slots 

SN   8 
    Slot Length 

SL  cm 25.4 
    Slot Width 

Sw  cm 1.27 
Sensing Can    
    Inner Radius WR  cm 14.92 
    Length 

WL  cm 30.48 
Flux Loop    
    Radius 

LR  cm 7.918 
  

IV. CALIBRATION 
Our preferred method uses long, small-diameter coils driven 

by a high-voltage, short-pulse generator to provide the 
excluded flux. The excluded flux was directly measured with a 
loop tightly wrapped around the coil. The calibration factor is 
calculated from direct flux measurements [10] 
 
 /DML Loop xk ≡ ∆Φ Φ  (15) 

 Due to the non-ideal geometry of the real apparatus this 
measured factor deviates from the factor for an ideal coaxial 
geometry of infinite length 
 
 1 /DML loop Wallk A A= −  (16) 
 
The ideal factor calculated from the dimensions in Table 1, 
which are taken from ref. [10], is 0.72063DMLk = . 

The response of the DML to a given excluded flux can be 
calibrated independently of the bias magnetic field, as can be 
seen by setting 0 0B = in deriving Eq. (6), and we performed 
calibrations with and without the bias field. Based on 
measurements using coils with diameters, the average 
measured calibration factor was 0.655 1.7%DMLk = ± for our 
prototype [10]. This is a 10% departure from Eq. (17), largely 
due to the non-ideal apparatus geometry.  

We undertook a number of numerical experiments to better 
understand the factors contributing to the departure from ideal 
in an effort to assess the overall uncertainty that can be 
expected in upcoming beam measurements at DARHT.  
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V. SIMULATIONS 
The preceding derivation assumed an infinitely long system. 

Although in practice the beam might fit this model, the 
diagnostic apparatus certainly does not. In fact, the measured 
calibration constant is 10% less than the ideal calculated from 
Eq.(6). Therefore, Eq.(6) must be corrected to account for the 
finite length of the flux conserving can. .Moreover, the pulsed 
coils used for calibration were also of finite length. In order to 
investigate these corrections, we resorted to magnetic field 
simulations. 

The PerMag magnetic field solver was used to simulate 
calibration of the DML [11, 12] . These simulations are 2D. 
The PerMag postprocessor simplifies the required flux 
calculations by providing the magnetic vector potential

/ 2rAθ π= Φ , where Φ is the flux linking a disk with radius 
r . Perfect conductor flux conserving surfaces are modeled by 
imposing Dirichlet boundary conditions. The calibration coil 
is modeled as a thin current sheet, instead as a helix. The error 
introduced by this approximation will be assessed in future 
work with 3D simulations. 

A. Ideal Infinite Geometry 
In order to establish the accuracy of numerical experiments, 

one must begin with simulations of a problem with a known 
analytic solution. For the DML, this baseline was a very long 
coil in a very long pipe to quantify the numerical error when 
compared to the analytic expression from Eq. (6). These DML 
numerical experiments began with a simulation of a 150-cm 
long calibration coil with a 1.255-cm radius in a 200-cm long 
pipe with 15-cm inner radius. Zoning was reduced until an 
accuracy greater than 1% was achieved. 

Fig. 3 and Fig. 4 show the results of this simulation. The 
simulated calibration factor was 0.755235DMLk =  calculated 
for a loop with radius 7.5 cmLoopR = . Compared with the exact 
value 0.75 from Eq. (6), this is in error of only 0.7%, which is 
competitive with the best physical measurements. 
 

 
Fig. 3: rAθ outside of a 150-cm long calibration coil in a 200-cm long 
flux conserving pipe (wall shown in cyan). Color is graded from zero 
(blue) to maximum (red). 

 
Fig. 4: Magnetic flux ( 2 rAθπ ) at z=0. 

 
 

B. Calibration Coil Finite Length 
The next simulation investigated the effect of finite length 

of the calibration coil. For this, the length was shortened to 
that used in the laboratory calibrations, 45 cm [10]. Plots 
similar to Fig. 3 and Fig. 4 were obtained, but not reproduced 
here in the interest of brevity. The simulated calibration factor 
obtained by analysis of the data was 0.75238, a reduction of 
less than 0.38% from the previous result, and only 0.31% 
greater than the ideal 0.75, suggesting that errors in coil length 
alone would contribute insignificant uncertainty to our 
calibrations. 

C. Outer Wall Finite Length 
Simulations to investigate the effect of non-uniform outer 

wall used the 150-cm coil length of the baseline described in 
section V.A. The 30-cm ID outer wall was necked down to the 
14.6-cm beam pipe ID at either end of the 30.48-cm length of 
the can, as shown in Fig. 5 . The simulated calibration factor 
from this simulation results was 0.733771DMLk = , which is 
only 2.21% less than for an infinite uniform geometry (0.75). 
Thus, the finite length of the outer wall appears not to 
significantly reduce the sensitivity of the DML. 
 

 
Fig. 5: Magnetic field in flux conserving beam tube and DML 
apparatus. 
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D. Combined Finite Length Effects 
The final simulation with these dimensions combined the 

short coil with the finite length can.  Fig. 6 shows the central 
60 cm of the magnetic field in this configuration. The 
simulated calibration factor from this result was

0.733577DMLk = , which is only 0.03% less than that for a 
long coil with this wall geometry. The combined effect of 
finite length reduces the ideal factor (0.75) by only 2.2%. 
 

 
Fig. 6: Magnetic field of calibration coil in flux conserving can (60 
cm of a 200-cm long simulation shown).  

E. As-Built Simulations 
The simulation of the last paragraph was repeated with as-

built dimensions (Table I) [10]. The simulated calibration 
factor using as-built dimensions is 0.70125DMLk = , which is 
2.4%  less than the ideal factor (0.71836) calculated for the 
same dimensions. 

Finally, the DML apparatus was actually calibrated without 
the beam pipe extensions shown in Fig. 2. The magnetic field 
for the calibration configuration is shown in Fig. 7. The 
simulated calibration factor in this configuration is

0.70065DMLk = , which is only 0.09% different than with the 
beam pipe extensions attached. Thus leaving the beam pipes 
off, as was done for the calibration experiments, has little 
affect on the results.  

This simulation is the most accurate 2D model of the 
calibration experiments and its results differs from the 
measured value (0.655 [10]) by 7%. This difference is 
tentatively ascribed to 3D effects, measurement data, and 
analysis. 3D simulations are needed to further narrow down 
the reason. 
 

 
Fig. 7: Magnetic field of calibration coil in DML apparatus as 
calibrated. 

 
 
 

 
 

Results of these 2D simulations are summarized in Table II. 
 

Table II. Simulated Calibration Factors 
Geometry 

DMLk  
(Eq. 6) 

DMLk  
(simulated) 

Diff 
% DMLk  

(measured) 

Diff 
% 

Infinite: 0.75000     
Long Coil  0.75523 0.70   
 Short Coil  0.75238 0.32   
Can+Pipe:      
Long Coil  0.73377 2.16   
Short Coil  0.73358 2.16   
As- Built: 0.71836   0.655 9.67 
With Pipe  0.70125 2.38   
Bare Can  0.70065 2.47 0.655 6.97 

 

F. 3D Effects 
Simulation of three dimensional effects is beyond the scope 

of this article. However, these effects deserve some 
discussion, because they can introduce further uncertainty into  
the calibrations. The two most obvious 3D effects are the non-
ideal helix of the calibration coils, and the slotted beam tube. 

The excluded flux of a loosely wound helix differs from the 
uniform current sheet assumed in this article. There are 
approximations for this [13], as well as an exact analytic 
solutions [14, 15] . These can be used to calculate the helical 
correction for an ideal, infinite length geometry. In this case, 
the magnetic field produced by the helical coil inside a flux 
conserving tube can be calculated by the method of images. 
To do this, one superimposes the field of an image coil placed 
outside the tube in order to meet the boundary conditions at 
the tube wall ( 0rB = ), and flux conservation ( 0WR Aθ =  ). 
The exact analytic expressions are Bessel expansions for the 
magnetic vector potential, so the flux ratio needed for 
calibration can be readily obtained from rAθ  calculated for the 
coil plus its image. However, 3D simulations would be needed 
to properly include the finite length effects.  
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VI. CONCLUSIONS 
These 2D simulations help quantify how the finite length of 

our apparatus reduces its sensitivity from the ideal. This is 
evidenced by the reduction of the calibration factor from its 
value for an infinite length geometry. Furthermore, the 
simulations show that there is little accuracy to be gained by 
lengthening the calibration coils beyond what we used for the 
calibrations, and that difference in lengths of the coils we used 
adds less than 0.5% uncertainty to the results.  

Although 2D simulations are useful for clarifying finite 
length effects, they are inadequate for predicting the 
calibration constant measured for our DML apparatus to an 
accuracy better than 7%.. This must be addressed with 3D 
modeling, and future directions include calculations of the 
correction for the helicity of the calibration coils, Simulations 
of measurements of a Larmor rotating beam in the field of the 
bias solenoid of this apparatus are also anticipated. 

Of course, there are other sources of uncertainty in our 
calibrations, such as data recording and analysis, and will 
address these after isolating geometrical effects through 
further numerical experiments.  
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